Understanding your soil analysis Bryan McLeod

UNDERSTANDING YOUR SOILS USING THE ALBRECHT MODEL

BRYAN MCLEOD

12

Why Analyse our soils

- IF YOU CAN'T TEST IT YOU CAN'T GUESS IT
- Understanding our soils limiting factors helps us to build a strong foundation and a good environment for all beneficial soil biology
- We can wait and let it happen or help make it happen
- We need to understand our soils positives and negatives
- Working with our soils, we can help them develop, structurally and biologically, seeing the beneficial end results is extremely rewarding
- As we grow plants soil nutrient levels change, eg all plants as they grow acidify the soil they take in H2O, the H goes to the soil

Soils Mineral Balance has a direct effect on the following.

- PERCENTAGE OF CROP WASTAGE AT HARVEST
- PLANT NUTRITIONAL CONTENT. Directly related to soil mineral balance
- FLAVOUR/PALATABILITY . Directly related to soil mineral balance
- **SHELF LIFE**. Directly related to soil mineral balance

A soil analysis has to be

- EDUCATIONAL teaching you to understand your soil
- **PROVIDING INFORMATION & ASSISTANCE** for you to be able to formulate the correct fertiliser program for your particular soil.
- Don't look over the fence your soil is unique to you
- ALLOWS YOU TO TEST THE SOIL TESTER

UNDERSTANDING THE THREE ASPECTS of YOUR SOIL

BIOLOGICAL

If air space is increased by altering the chemical balance → increased microbial activity → improved soil structure → more natural N → more available P

Do we want to grow volume or volume and quality Look for all limiting factors

Having a good looking plant doesn't automatically mean its nutritious

Being organic doesn't automatically mean its good

Quality means nutrition, taste and shelve life

Not only volume

Sulphur is the limiting factor

28% Exchangeable Sodium ideal 0.5 to 3%. Lime applied and worked to 50mm – result 12 months

Poor soil structure due to –

Compacted High 8.4 PH -Excess Mg 40% – Iow Ca 40%. Lime applications displacing Mg Now 62%Ca, Mg 18%

later

DIAGNOSING NUTRIENT DEFICIENCIES BY PLANT ANALYSIS

(Robin Graham - Waite Analytical Services)

 Table 1. The concentrations of nutrients in young leafpetiole tissue of two broad-acre crops growing across the fence from each other, one of them giving the farmer cause for concern because of lack of vigour and an unusual pale yellow colour.

	Concentratio	ns of nutrients in	tissue (mg/kg)		
Crop condition	Nitrate-N	Р	к	S	Zn
Vigorous	2,500	2,100	32,000	1,900	21
Poor	9,000	3,000	38,000	160	29

Sampling tool

1000

0

- 😪

Strong plastic bag or clean plastic bucket

ea p

Placing sample in clean plastic bag.

plugs from

P

samp

STA IV

Compress cultivated soil with heel. Then sample in heel print.

Push probe into full depth (150mm) cultivated soil. 100 mm pasture or "no till" cropping

Presentation of data comes in many different forms from each Lab

But they can all contain the same info, we just need to know how to extract it.

We will see how

	Lab No.	XSS20092	XSS20093	XSS						1				
	Cas No					Unit	Desired Level	Level Found	c.mol/kg	Very Low	Low	Acceptable	High	Excessi
	Name	0.	Channes		ECEC	cmol/kg	5.00-25.0	22.6						
	rearra	20 (otten w	/nen		eel	1.20-2.00	0.540						
	Code	07/07/20	07/07/20	07/0	pH 1:5 water	pH units	6.50-7.50	6.48						
	Customer	Warn Soch	a await	ed so	H Caciz (following 4A1)	pH units	5.50-6.50	6.23	_			_		
	Depth	0-10	0-10	0-	Ammonium - N (2M KCI)	mg/kg	2.0-10	100						•
Colour	And International Property in which the	911	DKGR	G	Olsen Phosphorus	mg/kg	15-25	1.9						
Gravel	%	At I	irst qia	Ince) e 25 0	5.0						
Texture		25	2.5	3 -	Bray 2 Phosphorus	mg/kg	30-60	6.0						
Ammonium Nitrogen	ma/sa	little	e confr	ontin	DGT-P	µg/L		13.0						
Nitrate Nitrogen	malea	22	20		MCP Sulfur (S)	ma/ka	35.0-70.0	60.0						
Phosphorus Coluell	malka	202	30		- Calgium (CR) - AmmAc	mg/kg	100-2500	1830	9,14					
Potassium Columit	mgrkg	205	labs d	ata d	9 Mater and a SmAd	alla	0 6 50	850	6.99					
Sulfur	mg/kg	708	125	25	Potassium (K) - AmmAc	mg/kg	150-220	363	0.928					
Ormania Carthan	mg/kg	info	it may	hà i		ffar	0 15.1160	1260	5.50					
Organic Carbon	%	44110	IL SPIICLY	NC	Considerable aluk Alium	ch/kg	0.10 0.35	< 0.02						
Conductivity	dS/m	0.130	0.183	0.0	Exchangeable hydrogen	cmol/kg	0.10-0.35	< 0.02						
pH Level (CaCl2)			nat: 30	me I	s easier to	mg/kg	0.50-2.0	1.4						
pH Level (H2O)		6.8	5.5	6.	Manganese (Mn)	mg/kg	1.0-10	93						
DTPA Copper	mg/kg	HINC	erstan	1.3	Copper (Cu)	mg/kg	0.50-1.0	1.8						-
DTPA Iron	mg/kg	437.60	467.00	312.	g Zinc (Zn)	mg/kg	0.50-1.0	0.19						
DTPA Manganese	mg/kg						Southern	Cross Un	iver					
DTPA Zinc	mg/kg			Envi	ronmental		PO Box 15	7 Lismore	NS)					
Exc. Aluminium	meq/100g			Analy	/sis/		P: +61 2 66 F: eal@sci	520 3678 Ledu au		'ΔΤ	ไ ว่	hue	AC	
Exc. Calcium	meq/100g			Labo	rotory		www.scu.	edu.au/ea			La	U US	U D	
Exc. Magnesium	meq/100g			Labo	ratory		ABN: 41 995	651 524		11	1-	▲		
Exc. Potassium	meq/100g								A	MDr	ecn	t		
										1	1 /	•		
		AGRIC	ULTURAL SOIL A	ANALYSIS RE	PORT				C	alcu	llati	lons		
		1 sample su Analysis req	pplied by FarmLab on 12/11/2 uested by Sam Duncan. Your 、	020. Lab Job No.K0574 Job: Ray Milidoni - FL00	00218						-			
		Level 2, W40) ARMIDALE NSW 2351		Samp Sample ID: FL0000	le 1 Heavy Soil	Medium Ligh Soil	nt Soil San So	dy il	use	the	AP	AL	
					Crop: Soi	idoni Clav	Clay Loam	Loa	my	h		of		
			Parameter	N	lethod reference K057	4/1 Indica	tive guidelines - refer	to Notes 6 and		10, (ле		II Y	
		Soluble C	alcium (mg/kg)		5,57	1150	750 3	175 17	5		1		1.	
		Soluble N Soluble P	Magnesium (mg/kg) 'otassium (mg/kg)	**ini	100se S10 - Morgan 1	1 160 3 113	105 75	60 2: 60 50	C	onsi	ilta	int c	llen	Its

**Rayment & Lyons 2011 - 9E2 (Bray 1)

**Rayment & Lyons 2011 - 9B2 (Colwell)

**Inhouse S3A (Bray 2)

**Inhouse S37 (KCI)

Rayment & Lyons 2011 - 4A1 (1:5 Water)

Rayment & Lyons 2011 - 3A1 (1:5 Water)

**Calculation: Total Carbon x 1.75

314

295

859

1,292

120

11

66

7.32

0.516

16

15

45^{note 8}

80

90^{note 8}

15

20

10.0

6.5

0.200

> 5.5

12

30^{note 8}

50

60^{mote 8}

13

18

8.0

6.5

0.150

>4.5

10

24^{note 8}

45

48^{note 8}

10

15

8.0

6.3

0.120

> 3.5

5.0 20 ^{note 8}

35 40 ^{note 8}

10

12

7.0

6.3

0.100

> 2.5

Soluble Phosphorus (mg/kg)

Phosphorus (mg/kg P)

Nitrate Nitrogen (mg/kg N)

Sulfur (mg/kg S)

pН

Ammonium Nitrogen (mg/kg N)

Electrical Conductivity (dS/m)

Estimated Organic Matter (% OM)

uses CSBP

		Environment Analysis	a ' [0	da	PO Bo P: +6 E: eal@	ern Cros x 157 Lis 2 3620 @scu.edu	is Unive more N 3472 J.au	look at two	Lab No	XSS20092	XSS20093	XS\$20094
		Laboratory	set	S 0	ABN: 41	995 651 5	au/eal 24	ays Dad's	Name	East	North Front Paddock	West Block Paddock
			Ga	rd	en	an	dN	legan's	Code	07/07/20	07/07/20	07/07/20
A 1 si	GRICULTURAL SOIL AN ample supplied by FarmLab on 12/11/2020.	ALYSIS REPORT Lab Job No.K0574	na	stu	re	an		icgan s	Customer	Warmambool Veterinary	Warmambool Veterinary	Warmambool Veterinary
Ana Lev	lysis requested by Sam Duncan. Your Job: el 2, W40 ARMIDALE NSW 2351	Ray Milidoni - FL0000218	Sample 1	Heavy	Medium	Light Soil	Sandy	the second second second	Depth	0-10	0-10	0-10
		Sample ID: Crop:	FL0000218 Soil	Soil	Soil	1	Soil Loamy	Colaur		GR	DKGR	GR
	Parameter	Client: Method reference	K0574/1	Indicativ	re guidelines -	refer to Not	Sand es 6 and 8	Gravel	%	0	0	0
	Soluble Calcium (mg/kg) Soluble Magnesium (mg/kg)		5,574	1150 160	750 105	375 60	175	Texture		2.5	2.5	3.5
	Soluble Potassium (mg/kg) Soluble Phosphorus (mg/kg)	**Inhouse S10 - Morgan 1	723	113 15	75 12	60 10	50 5.0	Ammonium Ndrogen	mg/kg	17	29	12
	Phoenhorus (ma/ka P)	**Rayment & Lyons 2011 - 9E2 (Bray 1) **Rayment & Lyons 2011 - 9E2 (Colvell)	295	45 ^{note 8}	30 ^{note 8}	24 ^{note 8}	20 note 8	Nitrate Nitrogen	ma/ka	22	39	8
	nosphords (hig/kg r)	**Inhouse S3A (Bray 2)	1,292	90 ^{note 8}	60 ^{note 8}	45 48 ^{note 8}	40 note 8	Photos		-	50	2
	Nitrate Nitrogen (mg/kg N) Ammonium Nitrogen (mg/kg N)	**Inhouse S37 (KCI)	120 11	15 20	13 18	10 15	10 12	Prosphorus Colwell	mg/kg	203	318	94
	Sulfur (mg/kg S)		66	10.0	8.0	8.0	7.0	Potassium Colwell	mg/kg	703	1129	257
	pH Electrical Conductivity (dS/m)	Rayment & Lyons 2011 - 4A1 (1:5 Water) Rayment & Lyons 2011 - 3A1 (1:5 Water)	7.32 0.516	6.5 0.200	6.5 0.150	6.3 0.120	6.3 0.100	Suthir	malka	10.1		10.0
	Estimated Organic Matter (% OM)	**Calculation: Total Carbon x 1.75	16	> 5.5	>4.5	> 3.5	> 2.5	den en	mgykg	10.1	14.1	10.0
	Exchangeable Calcium (kg/ha)		13,899	7000	4816	2240	840	Organic Carbon	%	4.43	5.90	3.78
	(mg/kg) (cmol ₄ /kg))	6,205 5.4	3125 2.4	2150 1.7	1000 1.2	375 0.60	Conductivity	dS/m	0.130	0.183	0.092
	Exchangeable Magnesium (kg/ha)		1,467	650	448	325	168	all level (C+Oth)				
	(mg/kg) (cmol,/kg)	(Ammonium Acetate)	655 2.4	290 0.60	200 0.50	145 0.40	75 0.30	pri Level (GaGIZ)		6.2	4.5	5.3
	Exchangeable Potassium (kg/ha)		2,138	526	426	336	224	pH Level (H2O)		6.8	5.5	6.4
	(mg/kg) (cmol,/kg))	0.23	0.3	0.26	0.22	0.11	DTPA Cooper	mailer	1.12	1.41	1.35
	Exchangeable Sodium (kg/ha)		118	155	134	113	57		mana	1.19	1,41	1.30
	(mg/kg) (cmol,/kg)	0.02	0.6	0.5	0.4	0.2	DTPA Iron	mg/kg	437.60	467.00	312.40
	Exchangeable Aluminium (kg/ha) (mg/kg)	**Inhouse S37 (KCI)	3.1 1.4	121 54	101 45	73 32	30 14	DTPA Manganese	mg/kg	7.76	33.15	18.74
	(cmol,/kg) **Rayment & yons 2011 - 15G1	<0.01	0.6	0.5	0.4	0.2	DTPA 7inc		2.40	40.00	0.40
	Exchangeable Hydrogen (kg/ha) (mg/kg)	(Acidity Titration)	<1 <1	13 6	11 5	8 4	3 2	STI AZIC	mgung	3.19	16.38	2.16
	Effective Cation Exchange Capacity (ECEC) (cmol,/kg)	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol,/kg)	39	20.1	14.3	7.8	3.3	Exc. Aluminium	meq/100g	0.010	0.060	0.040
	Calcium (%) Magnesium (%)		79 14	77.6 11.9	75.7 11.9	65.6 15.7	57.4 18.1	Exc. Calcium	meq/100g	20.22	20.07	18.13
	Potassium (%)	**Base Saturation Calculations -	6.3	3.0	3.5	5.2	9.1	Exc. Magnesium	men/100n	6.38	6.67	10.05
	Sodium - ESP (%) Aluminium (%)	Gation Grior ₄ /Kg / EGEC X 100	0.59	1.5	1.8	2.9	3.3		under noor	0.09	0.07	12.20
	Hydrogen (%)		0.00	6.0	7.1	10.5	12.1	Exc. Polassium	meq/100g	1.54	2.43	0.53
	Calcium/Magnesium Ratio	**Calculation: Calcium / Magnesium (cmol,/kg)	5.7	6.5	6.4	4.2	3.2					

	Lab No	XSS20092	XSS20093	XSS20094			вι		reoa	Pre	miu	m S	οιι κε	epor	T
	Name	East H	ere I h	ave ta	k	DATA FROM CSBP SUPPLIED by		Customer: Sample Na	Meghan Cla: me:	xton		Agent: BRYAN M	0 CLEOD		
	Code	07/07/20	Paddock egan's	Paddock	12	ta and		Lab No.:	0			Date:	18-Jan-21		
	Customer	Warmambool	Warmambool	Warmambool		C	Unit	Desired	Level		Very Lo	w Low	Mid Range	High	Excessive
	Depth	0-10		to one		Fotal Exchange Capac	ty (TEC)	12-25	33.98	TEC					
Colour	STATISTICS.	GR	on Mark	ot GR		Colloidal Organic Matte	er %	4.0 - 6.0	6.30	рН					
Gravel	%	0	orksne	els	-	pH (Water)	-	6.0 - 6.5	6.40	N					
Texture		2.5	2.5	3.5		Nitrogen (N) NO 3	kg/ha ppm	90 - 120	107 6.0	Total P					
Ammonium Ndrogen	ma/ka	17	29	12		MCP Sulfur (S)	ppm ppm	40 - 60	12.0	DGT P					
Nitrate Nitrogen	malka	22	30	6	suo	Total P	ррт		0	Olsen P					
Phósohogus Colvell	mg/kg	202	35	0	Ani	DGT Phosphorus	ррт	0	0	Ca					
Potassium Coluel	mgrkg	200	316	34		Phosphorus (Colwell) Phosphorus (Olsen)	ppm ppm	75-85	94 73	K					
Solf a	mg/kg	703	1129	257			Deficit	kg/ha	0	Na					
ounur	mg/kg	10.1	14.1	10.0	Ŀ	P Buffering Index (PBI)		<100	182	Ec 1:5					
Organic Carbon	%	4.43	5.90	3.78		Calcium (Ca)	Desired	ррт 4619	kg/ha 10379	Co					
Conductivity	dS/m	0.130	0.183	0.092			Found Deficit	3348 kg/ha	7523 2856	B Fe					
pH Level (CaCl2)		6.2	4.5	5.3	suc	Magnesium (Mg)	Desired	490	1101	. Mn					
pH Level (H2O)		6.8	5.5	6.4	Catio		Deficit	kg/ha	3050	Cu					
DTPA Copper	mg/kg	1.13	1.41	1.35		Potassium (K)	Desired Found	265 191	595 429	Δn Mo					
DTPA Iron	mg/kg	437.60	467.00	312.40		Sodium(Na)	Deficit	kg/ha	166	AI					<u> </u>
DTPA Manganese	mg/kg	7.76	33.15	18.74	H	Sourain(nu)	Found	94	212	-	Pa		ion Donoont		
DTPA Zinc	ma/ka	3.19	16.38	2.16		Chlorides (CI)	ppm dS/m	<200	0.09	-		se Satura	ion Percent	ages	
Exc. Aluminium	meg/100g	0.010	0.060	0.040	F	Cobalt (Co)	opm	>1.5	*	Desired		Mg	Found		
Exc. Calcium	meg/100g	20.22	20.07	18.13		Boron (B)	ppm	0.8	1.53	-	\square	12.0% K			
Exc. Magnesium	meg/100g	6.29	6.67	12.25	nents	DTPA Iron (Fe)	ррт	10 - 70	312.00	- /		- Na 1.5	% /	Ca	Ma
Exe Polassium	megridog	0.00	0.07	12.20	Elen	DTPA Manganese (Mn) DTPA Copper (Cu)	ppm ppm	4 - 50	18.74 1.35	- (Ca 68.0%	12	.0%	49.3%	33.3% K 1.4%
	med roug	1,54	2.43	0.53	lace	DTPA Zinc (Zn)	ррт	1.0 - 5.0	2.16	-		Other 4.5%	\ \		Na 2.4%
		Veene				Molybdenum (Mo)	ррт	0.8 - 2.0	*	-		4.070		Other 4.6%	_н 9.0%
	Lab N	10 ×55200	92 XSS20	093 X:		Aluminium (Al)	ррт	<2.0	0.40						+
c. Sodium	mea/100a	0.91	0.7		ion %	Ca:Mg RATIO Calcium	% Ca	5.66 68.0	1.48 49.30	Total Def	ciencies: Please disc	The following t uss optimum a	able shows the total pplication rates wi	deficiency of ea th your ad∨is	sch element (kg/ha) sor.
ron Hot CaCl2	med 100g	0.81	0.74		turat	Magnesium Potassium	% Mg % K	12.0 2.0	33.30 1.40	PHOSPHORU MAGNESIUM	nd nd	BORON	nd nd	COBALT MOLYBDENUM	1.5 M 1.2
Other Clean	mg/kg	1.58	2.1	,	e Sa	Sodium (ESP) Other Bases	% Na %	1.5 4.5	2.40	POTASSIUM CALCIUM	166 2856	MANGANESE	83		
osphorus Oisen	mg/kg	48.9	73.7	· · · · · · · · · · · · · · · · · · ·	Bas	Exchangeable Hydroge	n %H	12.0	9.00	SULPHUR	40	ZINC	11.7	Cobalt Limit of	Detection 0.2ppm

Firstly understand what we are looking for We must see what are the limiting factors in our soil

SOIL MINERALS: EXCESSES & DEFICIENCIES

Soil minerals can work together or be antagonistic to each other. ALWAYS REMEMER: Plant deficiencies not only occur due to lack of a soil element, BUT Are also created by excesses. An excess always creates a deficiency.

SOIL

Excess	NITROGEN	may cause	POTASSIUM deficiency
Excess Iron	PHOSPHORUS	may cause	POTASSIUM, zinc, calcium OR deficiency
Excess	MAGNESIUM	may cause	POTASSIUM deficiency
Excess	POTASSIUM	may cause	MAGNESIUM deficiency
Excess Excess Excess	POTASSIUM SODIUM MAGNESIUM	Tmay cause	CALCIUM deficiency
Excess	CALCIUM	may cause —	POTASSIUM deficiency MAGNESIUM deficiency PHOSPHORUS deficiency TRACE ELEMENTS deficiency
Excess	MANGANESE	may cause effects similar to	MANGANESE deficiency
Excess	BORON	may cause marginal and interval scorch similar to	POTASSIM and/or MAGNESIUM
Excess	SODIUM &/or CHLORINE	may cause marginal leaf scorch similar to	POTASSIUM deficiency

PLANT

EXCESSES MAY EXIST WHEN VALUES FOR

NITROGEN (N)	are over	250 kgs per hectare
PHOSPHORUS (as P ₂ O ₅)	are over	800 kgs per hectare
SODIUM (Na)	are over	2% Base Saturation
POTASSIUM (K)	are over	8% Base Saturation
MAGNESIUM (Mg)	are over	20% Base Saturation
CALCIUM (Ca)	are over	75% Base Saturation

KNOW AND REMEMBER

				PRO	AG CONSULTING								PRO	AG	CONSL	ILTII	٧G		
_			Customer:		Advisor:	te			-			CRO		ACH					
			Sample Nar	ne:	Crop:	1.5			_			Reno	rt Prenar	ed by	Bryan I. McLeod				
ſ		_	STH SIDE		SPINACH				_			Коро	Петтора	cuby	Dryan E Micecou		Email	proagcon@ozema	il com au
[Control 12557			Lab No.:	B0020	Date:	9-Aug	-07	-	Diam	4	-	:		4			prougeon.egozonia	
T			Desired	Level	Very Low Low	Accentable	High	Freesive		Plan	t an	aiys	is re	epori	[-				
_		Unit	Level	Found	TEC	reception		LACCONT		Date:				Agent	B McLEOD	S	ample:	SPINACH	
	Total Exchange Cap	acity (TE	C) 12-25	19.81										, goint	0			Vaur	
	Colloidal Organic Ma	atter %	4.0 - 6.0	3.20	nH						1		-		Dia	nf		rour	
	pH (Water)		6.0 - 6.5	8.00	N					L KAYI			Res	ults - Re	elative to FIAI	п		Test Res	sulte
														кер	uirements			TCSTRC.	Juits
	Nitrogen (N) NO 3	kg/na	90 - 120	8Z *															
	NH 3	ррт		*	Ca								0-6			Unde			-
Sug	Sulphate (S)	ppm	20 - 30	84	Ma				Desire	ed Range		_	Deno	cient Lo	w Optimum r	ngn			
Ϋ́́	Olsen (P)	ppm	55-65	111	K				4 20	- 5.20		N	1					Nitrogen %	3.39
	Phosphorus (Bray 2)	kg/ha	324	570	Na					0.20								introgen in	0.00
	Deficit	kg/ha	Units P	0					0.48	- 0.58		Р						Phosphorus %	0.27
	Phosphate Recovery	%	100	80	Ec 1:5								-						
			ppm	kg/ha	Co				3.50	- 5.30		к						Potassium %	2.27
	Calcium (Ca)	Desired Found	2692 2298	6050 5165	B														
		Deficit		885	Fe				0.60	- 1.20		Са						Calcium %	0.29
ŝ	Magnesium (Mg)	Desired	285	640	Mn														
atio		Found	494	1111	Cu				0.50	- 0.90		Mg						Magnesium %	0.19
Ű	Potassium (K)	Desired	320	710	Zn														
		Found	445	999	Mo				0.10	- 1.00		Na						Sodium %	1.16
	Sodium(Na)	Deficit		0	AI														
		Found	545	1224			1		0.40	- 0.80		s						Sulphur %	0.20
	Chlorides (CI)	ppm	<250	1656.0	Base Satu	ation Percer	ntages											_	
	Salinity EC 1:5	dS/m	<0.15	0.41					42	- 63								Boron ppm	18.42
+	(-h-h (C-)			0.57	Desired	Found	d		220	245		Fe						Iron	26.76
	Copait (Co)	ppm	>1.5	0.57	Mg ,12.0%			Mg 20.8%	220	- 249			-					поп ррп	20.70
ŧ	boron (B)	ppm	21.5	1.95	μ -4.1	К	\square		50	- 85		Mn						Manganese nom	11.54
a l	Mongonooo (Mn)	ppm	90 140	230.00		Na 5%		к		00			-					mungunese ppin	11.04
Ē		ppm	52.0	1.50		H 2.0%	Ca 🗧	5.89	6 8	- 20		Cu						Copper ppm	2.47
ace	Zine (Zn)	ppm	>2.0	11.00		5	58.1%	Na											
Ê	Molybdonum (Mo)	ppm	20.0	1 90	68.0%	her \ 4%		12.09	⁶ 40	- 80		Zn						Zinc ppm	12.96
	Aluminium (Al)	ppm	<2.0	*				H											
_	Aluminum (Al)	ppm	~2.0		-		0	ther_ .3%	0.15	- 0.30		Mo						Molybdenum "	
% u	Ca:Mg RATIO		5.67	2.79	Additional Comments:				1				4	1					
atio	Calcium Magnosium	% Ca	68.0	58.10	The following show the kg/ha of deficient	elements required to	bring the soil to	the ideal level	e r	nus	U J	OK	at	tne			-		
Į,	Potassium	% K	4.1	5.80	MAGNESIUM nd IRON	nd	MO	nd											
ŝ	Sodium	% Na	1.5	12.00	POTASSIUM nd MANGANE	SE nd		nı	itri	tion	\mathbf{a}^{\dagger}	va1	110						
Base	Other Bases Exchangeable Hydrog	% en % <i>H</i>	2.4	3.30	CALCIUM 885 COPPER	1.0		110		0.23	101	v qu	uu					Chloride %	
ш			12.0	olient	and matical factors	nu			0.1	- 0.25		G						chlonde 70	

STIMULATION AND ANTAGONISM CHART

Plants have two different life requirements Above ground and below

Bacteria & Fungi

Burrowers (Worms)

Aerobic

Anaerobic

Organisms

Nemato

Tops require C02. Reduced performance with high Oxygen C02. Note most C02 comes from soil

C02 from microbial activity

Roots require oxygen. Die with excess C02

Soil activity is continuously producing C02 and releasing it to the atmosphere

Desirable soil life requires O2

Soil analysis results will use the words CATIONS + ANIONS-

POSITIVE

- Calcium 60 68%
- Magnesium 12 20%
- Potassium 3-6%
- **Sodium** 1.5%
- Other Bases 2.5%
- Hydrogen 12%
- **Total** 100%
- All positives held to the negative soil particle

NEGATIVE Sulphur Phosphorus Nitrogen

Clay or OM Negatively Charged

What I look at in what order

- 1. CEC/TEC (Cation Exchange Capacity or Total Exchange Capacity)
- PH, how is it constructed See Base Saturation Percentages Some show you some you will need to calculate
- 3. Organic Carbon or OM, low or high?
- 4. Soil N
- 5. Sulphur level
- 6. P level
- 7. PBI P recovery P retention
- 8. Cations
- Excesses and deficiencies An excess of one always creates a plant deficiency of another
- 10. Calculate desired and deficiencies
- 11. Trace elements

Total Exchange Capacity TEC or Cation Exchange Capacity CEC Tells us

- your soils composition how many negative clay/OM sites there are to hold positively charged cations (Ca, Mg, K, Na, Al)
- This is your soils ability to hold cations

TOTAL EXCHANGE CAPACITY Where does it come from?

- It is the total of the cations, positive charged elements, Ca, M, K, Na, AI, measured in meq/100g soil or c.mol/kg
- See it in your soil report
- It is a measure of the positive charged, nutrient storage capacity of a soil.
- It tells you the nutrient storage capacity of your soil

You can find the CEC/TEC in the majority of tests if not we can calculate it

	Lab No	XSS20092	XSS20093	XSS20094	It's the sum of the Cations, Ca,
	Name	Fast	North Errort	West Block	Mg, K, Na, Al, H in meq/100gn
	100110	Cash	Paddock	Paddock	
	Code	07/07/20	07/07/20	07/07/20	
	Customer	Warmambool Veterinary	Warmambool Veterinary	Warmambool Veterinary	BSP
and the second se	Depth	0-10	0-10	0-10	Ca 18 13 49 30
Colour		GR	DKGR	GR	
Gravel	%	0	0	0	
Texture		2.5	2.5	3.5	
Ammonium Nitrogen	mg/kg	17	29	12	// Mg 12.25 33.30
Nitrate Nitrogen	mg/kg	22	39	6	
Phosphorus Colwell	mg/kg	203	318	94	
Potassium Colwell	mg/kg	703	1129	257	// K 0.53 1.44
Sulfur	mg/kg	10.1	14.1	10.0	
Organic Carbon	%	4.43	5.90	3.78	
Conductivity	dS/m	0.130	0.183	0.092	
pH Level (CaCl2)	and the second	6.2	4.5	5.3	1 1 a 0.09 2.42
pH Level (H2O)		6.8	5.5	6.4	
DTPA Copper	mg/kg	1.13	1.41	1.35	
DTPA Iron	mg/kg	437.60	467.00	312.40	/ AI 0.040 0.11
DTPA Manganese	mg/kg	7.76	33.15	18.74	
DTPA Zinc	mg/kg	3.19	16.38	2.16	
Exc. Aluminium	meq/100g	0.010	0.060	0.040	OB 2.8 5.0
Exc. Calcium	meq/100g	20.22	20.07	18.13	
Exc, Magnesium	meq/100g	6.38	6.67	12.25	H 0.58 9.0
Exc. Polassium	meg/100g	1.54	2.43	0.53	Total 35 22 CEC
Exc. Sodium	meq/100g	0.81	0.74	0.89	
Boron Hot CaCl2	mg/kg	1.58	2.18	1.53	

Megan's report there is no TEC/CEC or Base Saturation Percentages(BSP) recorded so it needs to be calculated

Add the meq/100gm of each ie Ca Mg K Na Al H(if shown) = the TEC, here it is 35.22

Ca 18.13meg	ivide Ca by the CEC x 100 = 49.30% BSP	
Mg 12.25	ivide Mg by the CEC x 100 = 33.30% BSF	
K 0.53	ivide K by the CEC x 100 = 1.44% BSP	
Na 0.89	ivide Na by the CEC x 100 = 2.42% BSP	
Al 0.040	ivide Al by the CEC x 100 = 0.11% BSP	
Total 31.84		
OB 2.8 5.	I have taken the liberty to add a pero	centage
H 0.58 9	for both other bases and H which I b	elieve
	gives a more accurate result	
Total 35.22	EC I have used this CEC figure for my c	alculation

E: eal@scu.edu.au www.scu.edu.au/eal ABN: 41 995 651 524

RICULTURAL SOIL ANALYSIS REPORT

ole supplied by FarmLab on 12/11/2020. Lab Job No.K0574 is requested by Sam Duncan. Your Job: Ray Milidoni - FL0000218 2. W40 ARMIDALE NSW 2351

		-						
2, W40 ARMIDALE NSW 23	351		Sample 1	Heavy	Medium	Light Soil	Sandy	
		Sample ID:	FL0000218	Soil	Soil		Soil	
		Crop:	Soil					
		Client:	Ray Milidoni	Clay	Clay Loam	Loam	Loamy	-
Parameter		Method reference	K0574/1	Indicative	e guidelines -	refer to Note	es 6 and 8	
uble Calcium (mg/kg)			5,574	1150	750	375	175	
	(cmol _* /kg)		31 ┥	15.6	10.8	5.0	1.9	
changeable Calcium	(kg/ha)		13,899	7000	4816	2240	940	
	(mg/kg)		6,205	3125	2150	1000	375	
	(cmol _s /kg)		5.4 🚽	2.4	1.7	1.2	0.60	
changeable Magnesium	(kg/ha)		1,467	650	110	325	168	
	(mg/kg)	Rayment & Lyons 2011 - 15D3	655	290	200	145	75	
	(cmol _* /kg)	(Ammonium Acetate)	2.4	0.60	0.50	0.40	0.30	
changeable Potassium	(kg/ha)		2,138	JEC	426	336	224	
	(mg/kg)		954	235	790	150	100	
	(cmol _* /kg)		0.23 🔫	0.3	0.26	0.22	0.11	
hangeable Sodium	(kg/ha)		118	155	134	113	57	
	(mg/kg)		53	69	60	51	25	
	(cmol _* /kg)		0.02	0.6	0.5	0.4	0.2	
hangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	3.1 🔻	121	101	73	30	
	(mg/kg)		1.4	54	45	32	N.	
	(cmol _* /kg)		<0.01	0.6	0.5	0.4	0.2	
changeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<1	13	11	8	3	_
	(mg/kg)	(<1	6	5	4	2	
ective Cation Exchange Capa XEC) (cmol _* /kg)	acity	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol ₊ /kg)	39	20.1	14.3	7.8	3.0	
cium (%)			79	77.6	75.7	65.6	57.4	
gnesium (%)			14	11.9	11.9	15.7	18.1	
tassium (%)		**Base Saturation Calculations -	6.3	3.0	3.5	5.2	9.1	
dium - ESP (%)		Cation cmol ₄ /kg / ECEC x 100	0.59	1.5	1.8	2.9	3.3	
ıminium (%)			0.04		74	10.5	10.1	
drogen (%)			0.00	0.0	7.1	10.5	12.1	
cium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol _* /kg)	5.7	6.5	6.4	4.2	3.2	

EAL add Ca, Mg, K, Na Al and H PH >7 so no H

Ca 31 Mg 5.4

K 2.4

Na 0.23

Al 0.02

Total 39.05 CEC

What if your report doesn't show meg/100gm or cmol/kg But only shows ppm we can calculate each one

	PH 5.6	If pH is <7.0 include H	I for your calculations se	e H chart		Multiply each by 0.73	
	ppm		(meq/100g)		BSP	Actual % inc	uding H
Calcium	3500	divide by 200	17.5	divide by CEC x 100	72.0	52.5	
Magnesium	600	divide by 120	5.0	divide by CEC x 100	20.4	14.9	
Potassium	300	divide by 390	0.8	divide by CEC x 100	3.2	2.3	
Sodium	250	divide by 230	1.1	divide by CEC x 100	4.5	3.3	
		CEC	24.31		100.0	73.0	
				From H char	27.0	27.0	hydrogen%
				Minus H	73.0	100.0	

https://ohioline.osu.edu/factsheet/anr-81

The analysis only tests the clay/OM content, so as the sand % increases the TEC/CEC decreases. This means that there is a lower % of exchange sites in your soil to hold <u>nutrients</u>

Sand -Clay/OM +

As clay/OM % increases TEC goes up so we have a greater capacity to hold nutrients

oil Texture Typical CEC (meq/100 g soil)						
Soil Texture	Typical CEC (meq/100 g soil)					
Sands	3-5					
Loams	10-15					
Silt loams	15-25					
Clay and clay loams	20-50					
Organic soils	50-100					
Both hold	100%					
Both hold when full l	100% out					
Both hold when full l volume is	100% out					
Both hold when full l volume is	100% out The size					
Both hold when full l volume is different. 7	100% out The size					
Both hold when full l volume is different. 7 of the tank	100% out The size /reserve					
Both hold when full l volume is different. 7 of the tank is totally d	100% out The size /reserve ifferent					

Clay/OM

Sand

capacity goes down

As sand % goes up TEC

decreases, nutrient holding

High TEC								Low	TEC	l	
Ca ²⁺	Ca ²⁺	Mg ²⁺	Al ³⁺	Fe ³⁺	Ca ²⁺	Ca ²⁺	Ca ²⁺	Mg ²⁺	A1 ³⁺	Fe ³⁺	
Ca ²⁺	Zn ²⁺	Ca ²⁺	H^{+}	Mg ²⁺	H^+	Ca ²⁺			H^{+}	Mg ²⁺	
√lg ²⁺	Ca ²⁺	Ca ²⁺	H+	Zn ²⁺	Fe ³⁺	Mg ²⁺	Ca ²⁺			Zn ²⁺	
H^+	Zn ²⁺	H+	Fe ³⁺	Al ³⁺	H^+			H^+	Fe ³⁺	A1 ³⁺	
Ca ²⁺	Fe ³⁺	Mg ²⁺	Mg ²⁺	Ca ²⁺	Ca ²⁺	Ca ²⁺		Mg ²⁺	Mg ²⁺		
Ca ²⁺	H+	Ca ²⁺	Mg ²⁺	H+	H^+	Ca ²⁺		Ca ²⁺	Mg ²⁺	H+	

Figure 1 Schematic diagram demonstrating the reduced nutrient storage sites for a soil with a low TEC when compared to a soil with a high TEC.

Variations of desired percentages with different exchange capacities

2% POTASSIUM 10% MAGNESIUM

68% CALCIUM High CEC

Low TEC <5

	Unit	Desired Level	Level Found	c.mol/kg		Labs o	ften giv	ve a	
ICEC	cmol/kg	5.00-25.0	22.6			wide r	ange of		
Organic Carbon (W&B)	%	1.20-2.00	0.540			desired	llevels		
oH 1:5 water	pH units	6.50-7.50	6.48						
H CaCl2 (following 4A1)	pH units	5.50-6.50	6.23						
litrate - N (2M KCI)	mg/kg	20-50	160						
Ammonium - N (2M KCI)	mg/kg	2.0-10	12			Desire	d levels	S	
Disen Phosphorus	mg/kg	15-25	1.9			oro dir	octly		
Colwell Phosphorus	mg/kg	25-29	5.0				celly		
Bray 2 Phosphorus	mg/kg	30-60	6.0			related	to the		
)GT-P	μg/L		13.0			TEC/C	CEC		
'BI Unadjusted		35.0-70.0	61,0		TEC		40	4.5	24
ACP Sulfur (S)	mg/kg	8.0-20	41			5	10	15	20
Calcium (Ca) - AmmAc	mg/kg	1200-2500	1830	9.14	Desired	ppm	ppm	ppm	ppm
Magnesium (Mg) - AmmAc	mg/kg	200-350	850	6.99	Ca	600	1360	2040	2720
Potassium (K) - AmmAc	mg/kg	150-220	363	0.928	Mg	121	145.2	217.8	290.4
iodium (Na) - AmmAc	mg/kg	15.0-160	1260	5.50	K	156	195	234	296.4
Exchangeable aluminium	cmol/kg	0.10-0.35	<0.02		N	17.00	24 5	E1 70	
Exchangeable hydrogen	cmol/kg	0.10-0.35	<0.02		Na	17.25	54.5	51.75	0:
loron	mg/kg	0.50-2.0	1.4						

AGRICULTURAL SOIL ANALYSIS REPORT

Desired % maybe the same but volumes and ppm will be different

.

.

Hanny Madium Light Coll Condy

1 sample supplied by FarmLab on 12/11/2020. Lab Job No.K0574 Analysis requested by Sam Duncan. Your Job: Ray Milidoni - FL0000218 Level 2, W40 ARMIDALE NSW 2351

eve	1 Z, W40 ARMIDALE NSW 2351			sample I	Call	Call	Light Soll	Sanuy
		(cmol _* /kg)	h	31	501 15.6	10.8	5.0	50II 1.9
	Exchangeable Calcium	(kg/ha)		13,899	7000	4816	2240	840
		(mg/kg)		6,205	3125	2150	1000	375
		(cmol _s /kg)]	5.4	2.4	1.7	1.2	0.60
	Exchangeable Magnesium	(kg/ha)		1,467	650	448	325	168
		(mg/kg)	Rayment & Lyons 2011 - 15D3	655	290	200	145	75
		(cmol,/kg)	(Ammonium Acetate)	2.4	0.60	0.50	0.40	0.30
	Exchangeable Potassium	(kg/ha)		2,138	526	426	336	224
		(mg/kg)]	954	235	190	150	100
		(cmol _* /kg)		0.23	0.3	0.26	0.22	0.11
	Exchangeable Sodium	(kg/ha)		118	155	134	113	57
		(mg/kg)		53	69	60	51	25
		(cmol _s /kg)		0.02	0.6	0.5	0.4	0.2
	Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	3.1	121	101	73	30
		(mg/kg)		1.4	54	45	32	14
		(cmol _* /kg)		<0.01	0.6	0.5	0.4	0.2
	Exchangeable Hydrogen	(kg/ha)	**Rayment & Lyons 2011 - 15G1 (Acidity Titration)	<1	13	11	8	3
		(mg/kg)		<1	6	5	4	2
	Effective Cation Exchange Capacit (ECEC) (cmol _* /kg)	ty	**Calculation: Sum of Ca,Mg,K,Na,Al,H (cmol _* /kg)	39	20.1	14.3	7.8	3.3
	Calcium (%)			79	77.6	75.7	65.6	57.4
	Magnesium (%)	i		14	11.9	11.9	15.7	18.1
	Potassium (%) Sodium - ESP (%)		**Base Saturation Calculations -	6.3	3.0	3.5	5.2	9.1
			Cation cmol,/kg / ECEC x 100	0.59	1.5	1.8	2.9	3.3
	Aluminium (%)			0.04	60	71	10.5	12.1
	Hydrogen (%)			0.00	0.0	7.1	10.3	12.1
	Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol ₊ /kg)	5.7	6.5	6.4	4.2	3.2
-	·							-

EXCHANGE CAPACITY & APPLICATION RATES

		3 TEC	PPM		30 TEC	PPM
Desired Calcium	60%	816 Kgs/ha	408	(Ca68%)	8160 Kgs/ha	4080
Measured Calcium	34%	408 Kgs/ha	204	(Mg 12%)	4080 Kgs/ha	2040
Deficiency Kgs		408 Kgs/ha		4080 Kgs/	na	
Lime Required		1.2 tn/ha			11.6 tn/ha	
Magnesium	20%	144 Kgs/ha	77	(Mg 12%)	720 Kgs/ha	360
		72 Kgs/ha	36		360 Kgs/ha	180
		72 Kgs/ha			360 Kgs/ha	
Potassium	7%	164 Kgs/ha	82	(K 3%)	702 Kgs/ha	351
		81.9 Kgs/ha	42		351 Kgs/ha	175.5
		81.9 Kgs/ha	42		351 Kgs/ha	

PH

Look at the pH but most importantly study to see just how the pH is constructed – this is the most important thing you must know about pH

PH is only a measurement of the hydrogen ion activity in a soil. It is not a measurement of soil fertility.

PH is the result of the balance or levels of cations (positive charged elements) not the cause of it.

The PH of a soil can be constructed with one or all of the cations. Not just calcium

The application of calcium, magnesium, potassium and sodium construct a pH.

Do you lime for PH or do you lime to correct a Ca def You should never lime for pH The PH is automatic when the soils Cations are balanced

Understand that

Magnesium is 1.66 times more effective than calcium at raising pH
Potassium 2 times calcium
Sodium 4 times calcium.

WHAT CONSIDERATION IS PH

Actual results from samples I have taken

pH(H2O)	6.20	6.00	6.00	7.80	5.80
Calcium	63%	45.98	23.61	37.43	7.10
Magnesium	14%	20.36	21.70	19.64	14.35
Potassium	4.2%	6.12	1.81	6.50	0.63
Sodium	1.6%	7.16	32.46	32.83	51.10
Other Bases	5.2%	5.40	5.42	3.60	5.80
Hydrogen	12%	15.00	15.00	00.00	21.00

Organic Matter/Organic Carbon OM = OC x 1.75 or OM/1.75 = OC

Calculations can be slightly different between labs as some use 1.66

Dad's OM = 16% Indicating a high percentage of composed and partly composted plant material

Megan's OC of $3.78\% \ge 1.75 = 6.4\%$ OM. At the top of the desired range

- Ideal level of OM 4 to 6%
- Excess unprocessed OM can result in low available soil N
- Soils can contain undecomposed or partly decomposed OM which during the analysis process can recorded as OC or OM
- Soil organisms involved in decomposition use nearly all available N for themselves, so plants go N deficient
- I find this to be common in many orchards/gardens

Application Rates

To compare per ha rates to garden rates, firstly there are 10,000sq metres/ha

Multiply per ha rate by 1000 = total gms then divide by 10,000 = rates/sq metre

eg 200kg/ha X 1000 = 200,000 gm/10,000 = 20gm/sq metre

SULPHUR The under estimated element of equal importance as P Essential for growth, plant nitrogen utilisation

- Sulphate S is water soluble so leaches quickly depending on rainfall/irrigation, elemental S breaks down slowly so is more stable in the soil
- Ideal soil level should be 40 to 60ppm.
- The majority of labs indicate a desired level of between 10 to 20ppm in practable terms this is far to low for optimum produce production
- Application: Desired 50ppm level found x 2 x 1.123 = kg/ha required, do not apply more than 60kg/ha of element S per annum
- Can be added to mix as
- elemental S as 90% Sulphur granules these are fine elemental powder mixed with bentonite clay. Do not apply 100% S granules as they take a significant time to break down
- Apply elemental S granules fert mix with to reduce total fertiliser cost when P not required
- Gardens use Sulphate of ammonia to provide S lacksquare
- Single super (superphosphate) contains 11% S \bigcirc

Phosphorus Your P analysis readings can be received in different forms as many lab use different analyse procedures

- Colwell P $\overline{}$
- Olsen P \mathbf{O}
- Bray 1 P 0
- Bray 2 P $\overline{}$
- DGT

**Rayment & Lyons 2011 - 9E2 (Bray 1)	295	
**Rayment & Lyons 2011 - 982 (Colwell)	859	
**Inhouse S3A (Bray 2)	1,292	

PBI Phosphorus Buffering index <100 desired P Retention % of 100 P Recovery % of 100

Phosphorus

- The desire levels should be on your report.
- Application: Desired ppm level found x 2 x 1.123 = kg/ha required.
- Then look at the % of P in available products
- Eg. Rock Phosphate 13%, Single Super (Super Phosphate 11%) DAP 20%
- Then work out an economic rate of application

	**Rayment	& Lyons 2011 - 9E	2 (Bray 1)	295	45 ^{mind}	30 ^{moted}	24 ^{note 8}	20 note /
Phosphorus (mg/kg P)	**Rayment	& Lyons 2011 - 98	2 (Colwell)	859	80	50	45	35
	**1	2)	1,292	90 ^{noted}	60 ^{moted}	48 ^{note 8}	40 note /	
Phosphorus Colwell	n	ng/kg	203		318		94	
							1.00	
	Me	gan's pa	isture					

Dad's garden – normal results from compost applications

Both reports show high to excess levels of P

P Calculation example

Desired level minus level found x 2 x 1.123 = kg of P/haDivide by 10,000 = gm/sq metre of garden

Found 20ppm, desired 30ppm = 10 def then see percentages of P product list

Then choose product from local company products

8	Superter	n	N	Р	к	S	Mg	Ca	
	CODE								
Ŵ	10581	Superten	-	9.0	-	10.5	-	22.0	
	10754	Superten 5K (10% Potash superten)	-	8.1	5.0	9.5	-	19.8	
	10755	Superten 7K (15% Potash superten)	-	7.7	7.5	8.9	-	18.7	
	10757	Superten 10K (20% Potash superten)	-	7.2	10.0	8.4	-	17.6	
	10759	Superten 15K (30% Potash superten)	-	6.3	15.0	7.4	-	15.4	
	10761	Superten 25K (50% Potash superten)	-	4.5	25.0	5.3	-	11.0	
8	Sulphurg	jain	N	Р	к	S	Mg	Са	
	CODE								
	10060	Sulphurgain 15S	-	8.6	-	14.8	-	21.0	
	10032	Sulphurgain 20S	-	8.0	-	20.0	-	19.8	
	10033	Sulphurgain 30S	-	7.0	-	29.5	-	17.5	
	11625	Sulphurgain Pure	-	-	-	90.0	-	_	

Most labs show the % of Ca, Mg, K & Na (Base Saturation percentages)

	Control Gregory sites]	Lab No.:	Gregory site	S		Date:	10-Jul-20)		
											Data must
		Unit	Desired Level	Level Found	Very	Low	Low	Acceptable	High	Excessive	include a H%
	Total Exchange Capacity	(TEC)	12-25	15.83	OM					PH 6.0	
	Colloidal Organic Matter	%	4.0 - 6.0	4.83	pH(CaCl)						
	pH (Water)		6.0 - 6.5	6.00	pH(water)						add it for you
-	рпсасі			0.30	N						
	Nitrogen (N)	kg/ha	90 - 120	99	S						calculations
	NO 3	ррт		0.6	P Colwell						
	NH 3	ррт		1590.0	Total P	1					
s	MCP Sulfur (S)	ррт	40 - 60	5	P Brav2	-					
<u>ō</u> .	Total Phosphorus	ррт		0	1 Drugz	-					
"A	Phosphorus (Colwell)	ppm	30 - 50	9	Ca						
	Def of Excess Colwell P	Kg/ha	112	69	Mg						
	Olsen P	nnm	21	v	K						
		ppin			: Na						
	P Buffering Index (PBI)	1	<100	0	CI	1					
			nnm	ka/ba	Ec 1:5	-					
	Calcium (Ca) De	esired	2152	4837	Co	-					
		Found	1210	2719		-					
		Deficit	kg/ha	2118	в	-					
s	Magnasium (Mg)		205	640	Fe Fe						
5	wagnesium (wg) Di	Found	726	1631	- Mn						
at	•	Deficit	ka/ba	1051	Cu	1					
0	Potassium (K)	Denen	kg/na		Zn	-					
		esired	216	485	Mo	-					
	!	ouna	122	214	1010	-					
% ر	Ca:Mg RATIO			5.67		1.00	See	how th	nis r	H is c	onstructed
<u>ē</u> .	Calcium		% Ca	68.0		38.2					
at	Magnesium		% Mg	12.0	:	38.2	Ido	al list o	n t	ne left f	found on
₫	Potassium		% K	3.5		2.0					
Sa	Sodium		% Na	1.5		2.0	the	night			
ð	Other Bases		%	3.0		4.6	une	rigiti			
3as	Exchangeable Hvd	Iroae	n % <i>H</i>	12.0		15.0					

Calcium (Lime)

The surface of the soil particles and humus have a negative field that attract and hold positively charged metal elements called 'CATIONS' to their surface. These elements will always SATURATE the complete surface of the soil particle, so the BASE SATURATION PERCENTS will always equal 100%.

This is an ideal balance. Soil structure is good. Maximum microbial activity. Optimum availability of all elements

Calculating Ca, Mg, K and Na

- We use the following figures Ca 200 Mg 120 K 390 Na 230
- There are two methods that can be used 1/ ppm and 2/ Base Saturation Percentages Today we will use the simplar ppm method

PH Chart showing H %

pH(water)	H%
4.2	61.0
4.3	59.0
4.4	57.0
4.5	55.0
4.6	53.0
4.7	51.0
4.8	49.0
4.9	47.0
5.0	44.0
5.1	42.0
5.2	39.0
5.3	36.0
5.4	33.0
5.5	30.0
5.6	27.0
5.7	24.0
5.8	21.0
5.9	18.0
6.0	15.0
6.1	13.5
6.2	12.0
6.3	10.5
6.4	9.0
6.5	7.5
6.6	6.0
6.7	4.5
6.8	3.0
6.9	1.5
7.0	0.0

PPM Method for Ca

Ca Desired

CEC x 200 = total if all exchange sites are occupied by Ca but we only need 68% to be Ca

 $CEC \ge 200 \ge 0.68 = desired ppm$ Co+ Ca CEC x 200 x % found = found ppm Ca+ Difference x = kg Ca required

Then see Ca% of available products = tn required/ha

Megan's CEC 35.22 x 200 = 7044 x 0.68 = 4789 x 2 = 9579 x 1.123 = 10758kg/ha desired CEC 35.22 x 200 = 7044 x 0.49 = 3451 x 2 = 6903 x 1.123 = 7752 kg/ha found Def = 3006 kg of Ca/ha

Good quality lime eg 90% CaCo3 of which approx 40% is Ca so / 3006 by 400 (400kg of Ca/tn) = 7.5tn/ha of lime required

Dad's Garden Ca

CEC 39.05 x $200 = 7810 \times 0.68 \times 2 = 10621 \times 1.123 = 11929$ kg/ha desired

 $\frac{\text{CEC 39.05 x 200}}{\text{Surplus}} = 7810 \times 0.79 \times 2 = 12339 \times 1.123 = 13857 \text{kg/ha found}$

Good quality lime eg 90% CaCO3 of which approx 40% is Ca so / 1929 by 400 (400kg of Ca/tn) = 4.8tn/ha of lime surplus

Choosing what Ca product to use

Lime – Calcium Carbonate 39% Ca– Lime suppresses soil Mg, so evaluate Mg level in test

Dolomite – Calcium Carbonate 25% Ca, Magnesium Carbonate 11% Mg

Apply when both Ca and Mg are low or when Mg is ideal but Ca is required. In NZ soils the majority of Mg deficiency is being created by lime applications without consideration for Mg

Gypsum - Calcium Sulphate 22% Ca 18% S – Water soluble. Can be applied to provide sulphur for crops, apply to pasture when the BSP of Ca is greater than 60%

> Gypsum @ 2.5tn/ha suppressing available Sel. Lambs lost use of back legs

PPM Method for Mg

- Megan's soil pH 6.4
- CEC 35.22 x $120 = 4226 \times 0.12 = 507$ ppm desired x $2 = 1014 \times 1.123 = 1139$ kg/ha desired
- CEC 35.22 x $120 = 4226 \times 0.333 = 1407$ ppm found x $2 = 2814 \times 1.123 = 3161$ kg/ha found
- Surplus = 2022 kg of Mg/ha
- Surplus Mg = a wet winter hard setting summer soil. Plants will be shallow Rooted.
- These soils produce sulphide gas which sterilises the soil, its also a green house gas
- High Mg suppresses plant K even when soil K is in ample supply
- Foliar K will give the best response
- Lime/Ca will displace the surplus Mg changing the soils environment improving the soil structure and soil life

This was a high Mg soil where irrigation water used to pond.

Ca 45% Mg 36%

Calcium magnesium percentages are now Ca 71% Mg 15%

Dad's Garden Mg

- CEC 39.05 x 120 = 4608ppm x 0.12 = 562ppm desired x 2 = 1129 x 1.123 = 1263kg/ha desired
- CEC 39.05 x 120 = 4608ppm x 0.14 = 656ppm found x 2 = 1469 x 1.123 = 1473kg/ha found Surplus = 210 kg of Mg/ha

Mg here is only marginally high but plant levels can be suppressed by the excess K.

- Apply per 100sq metres as a foliar every 21 days MgSO4 (Mag Sulphate) 50gms
- Boron, Available as Borax 20gms (Must dissolve in hot water first) Alternatively find a foliar product containing B

Dealing with potassium

K desired level varies with the CEC/TEC

As the CEC goes up the desired % of potassium goes down

CEC < 5 desired % 7

<	7	6
<	10	5
<	15	4.5
<	20	4
<	25	3.5
<	30	3
<	50	2

TEC	5	10	15	20	
Desired	ppm	ppm	ppm	ppm	
Са	600	1360	2040	2720	
Mg	121	145.2	217.8	290.4	
К	156	195	234	296.4	
Na	17.25	34.5	51.75	69	

PPM Method for K

Megan's soil pH 6.4

CEC 35.22 x $390 = 13736 \times 0.02 = 278$ ppm desired x $2 = 549 \times 1.123 = 617$ kg/ha desired

CEC 35.22 x 390 = 13736 x 0.012 = 165ppm found x 2 = 329 x 1.123 = 370kg/ha found

Def = 247kg of K/ha or a total deficiency of 500kg/ha of Sulphate of Potash – This application would be un economic so needs to be address over a period of time

But in this case the high Mg will be suppressing plant available K so we need to wait until the recommended lime is applied and Mg has been displaced.

Foliar K will give the greatest response here. I would normally recommend pasture samples to get a complete picture of what is happening.

High soil Mg can increase the incidence of lameness in stock due to [1] the hard soil [2] Increased plant stress due to shallow root systems = increased plant Nitrates

Dad's Garden K

- CEC 39.05 x 390 = 15229ppm x 0.02 = 304.59ppm desired x 2 = 609 x 1.123 = 648kg/ha desired
- CEC 39.05 x 390 = 15229ppm x 0.63 = 959ppm found x 2 = 1919 x 1.123 = 2155kg/ha found
- Surplus = 1507 kg of K/ha
- Vegetables will grow well but tend to go seed and can have a bitter taste I recommend foliar Magnesium as high K suppresses plant Mg
- Surplus K is often found in home gardens due mainly to the use of compost and animal manures
- Composts are great to promote soil biology need also to be evaluated as a fertiliser

Leaf tissue results taken from Red Soil in the Trundle, Tullamore and Nyngan districts 2000

Soil high in potassium with good boron levels

Fig 3. Leaf tissue results - BORON

								Weekly	Weekly
			Shepparton \	Waste /	Mushroom Compost / F	rank Harney	Biosys	Times	Times
			Western Co	mpost	Nagambie	/ Elmore	Agribusiness	Compost	Compost
Nitrogen (N)									
		100							
Wet Tonnes required	d for 1 Ha			10.0	10.0	10.0	10.0	10.0	10.0
Other nutrients gaine	ed:								
Calcium (Ca)				198	396	329	45	49	72
Sulphur (S)				23	106	31	15	367	337
Nitrogen (N)				171	113	163	59	51	54
Phosphorous (P)				25	40	99	21	32	43
Potassium (K)				126	65	123	66	610	542
Boron				0	0	0	0	0	0
Zinc				2	2	2	3	1	2
1		Ō		-	-	-	-	-	-
Calcium (Ca)		ppm	kg/ha	~				-7	4.00
outoitain (ou)	Eound	2071	4653	c i	Ca: MIG RATIO		5.0	2/	1.30
	Deficit	kg/ha	1949	. <u>ō</u>	Calcium	%	Ca 68	.0	39.5
Magnesium (Mg)	Desired	219	493	at	Magnesium	%	Mg 12	.0	29.1
3 (3)	Found	532	1195	2	Potassium	9	6 <mark>Κ</mark> 3.	5	11.1
Deficit kg/ha		kg/ha	a o		Sodium	%	Na 1.	5	0.7
Potassium (K)	Desired	208	467	ø	Other Bases		% 3	0	4.6
	Found	659 kg/bc	1480	as S	Evahangaabla Uud	Irogen 0	· · · · ·	0	15.0
Sodium(Na)	Found	12 Kg/na	27	ΞÓ.	Excliangeable Hydrogen		<mark>оп</mark> 12	.0	10.0
				-				1	

Trace elements

Def x 2 X 1.123 = Total of Element required x (100 \div percent of Element in product) = amount needed to be applied.

Eg. Dads sample Mn Desired 25ppm Found 13ppm Def 12ppm x 2 =24 x (100/percentage of Mn in product) MnS04 is 28% Mn, 100/28 = 3.5724 x 3.57 = 85kg/ha of MnS04 Now decide what is an economic application

Gardeners – source a ground or foliar fertiliser containing Mn

Trace element application rates

Cobalt – 100 to 200gm/ha of cobalt sulphate(21% Co) for pasture Boron - 150 to 200gm/ha of B, available as various products Iron - up to 400kg/ha of Ferrous Sulphate (30% Fe) for pastures other than grazing. Applications can be dangerous for livestock. If recognised Fe deficiency in pastures or fodder crops apply Iron Chelate at recommended rates

Manganese: Low levels adversely affect crop/pasture production, high soil Ca suppresses plant Mn. The young from animals on high Ca soils can be born with bent front legs. Essential for trash decomposition. Foliar applications only on high Ca soils, can be added to soil fertilisers normal Ca soils Copper – Copper 2.4kg/ha as copper sulphate at 10kg/ha Zinc - Various products available -Molybdenum – available as Sodium Molybdate. Maximum soil application 200gm/ha. Naturally increases as soil Ca increases

So once we have calculated all our requirements we need to view local fert companies product lists Organic or Conventional

Remember you may need both solid and foliar products

⁴⁸ Superten			N	Р	к	S	Mg	Ca	
	CODE								
Ŵ	10581	Superten	-	9.0	-	10.5	-	22.0	
	10754	Superten 5K (10% Potash superten)	-	8.1	5.0	9.5	-	19.8	
	10755	Superten 7K (15% Potash superten)	-	7.7	7.5	8.9	-	18.7	
	10757	Superten 10K (20% Potash superten)	-	7.2	10.0	8.4	-	17.6	
	10759	Superten 15K (30% Potash superten)	-	6.3	15.0	7.4	-	15.4	
	10761	Superten 25K (50% Potash superten)	-	4.5	25.0	5.3	-	11.0	
⁴⁸ Sulphurgain			N	Р	к	S	Mg	Са	
	CODE								
	10060	Sulphurgain 15S	-	8.6	-	14.8	-	21.0	
	10032	Sulphurgain 20S	-	8.0	-	20.0	-	19.8	
	10033	Sulphurgain 30S	-	7.0	-	29.5	-	17.5	
	11625	Sulphurgain Pure	-	-	-	90.0	-	-	

Peanuts 300% increased yield

Carrots Showing Boron Deficiency

High K suppresses plant Mn

High Mg soil see shallow roots

Copper deficiency increased frost damage

Plant roots choosing to grow between the mulch and soil where there is a

better supply of oxy

Decomposition taking place

Nitrogen dra

COWD ASSAULT

mulch should be applied to a maximum depth of 50mm at any one time

Side effects of over supply and poor timing of compost applications

Compost decomposition creating N deficiency reducing fruit size – timing of application is critical.

IDENTIFY YOUR SOIL TYPE the jar test

Fill a clear glass jar halfway with your soil sample.

Fill the remaining half with water, leaving 1" of air.

Attach lid, then shake the 3 jar vigorously until you have broken up any clumps of soil.

Set the jar aside to rest, undisturbed, overnight.

After 24 hours your jar's contents will have settled into distinct layers:

By examining the proportions of these layers, you can gain a sense of what type of soil you have, and what you need to add to improve your soil. Here are some examples to use for comparison. The middle jar is ideal soil:

THE END